
Blazor
Blazing past the competition

Johan Litsfeldt

2

Contents

1 Introduction 7
1.1 Pain points 7
1.2 History . 10
1.3 What is Blazor? 11
1.4 Why Blazor? 12

2 Background 15
2.1 The .NET Framework 15
2.2 WebAssembly 18
2.3 SignalR . 19
2.4 The Virtual DOM 20

3 Blazor variants 23
3.1 Choosing your flavour 23

3.1.1 Blazor WebAssembly 24
3.1.2 Blazor Server 25

3.2 Setting up your environment 27
3.3 Blazor WebAssembly 27

3

4 CONTENTS

3.3.1 Your first Blazor WebAssembly App 28
3.3.2 Project Structure 29

3.4 Blazor Server 31
3.4.1 Your first Blazor Server App 31
3.4.2 Project Structure 32

4 Blazor in-depth 35
4.1 Components 35
4.2 Code-behind 36
4.3 Passing data between components 37

4.3.1 Parameters 37
4.3.2 Routing parameters 38
4.3.3 Cascading parameters 40
4.3.4 Event callbacks 42
4.3.5 The ref attribute 43

4.4 Data binding 46
4.4.1 One-way data binding 48
4.4.2 Two-way data binding 49

4.5 Templated Components 52
4.5.1 Template parameters 52
4.5.2 Template context parameters 55

4.6 Lifecycle & rendering triggers 56
4.6.1 Component Lifecycle Events 56

4.7 Forms and Validations 60
4.7.1 Built-in form components 66
4.7.2 Fluent validation 67

4.8 Dependency Injection 68
4.8.1 Blazor WebAssembly DI 70
4.8.2 Blazor Server DI 72

CONTENTS 5

4.9 Authentication & Authorization 74
4.9.1 Blazor Server Auth 74
4.9.2 AuthenticationStateProvider service 78
4.9.3 Blazor WebAssemby Auth 79

4.10 State management 83
4.10.1 Server-side storage 83
4.10.2 URL 84
4.10.3 Browser storage 84
4.10.4 State container service 86

4.11 Component Virtualization 88
4.12 CSS Isolation 91
4.13 Debugging 93

4.13.1 IDE debugging 93
4.13.2 Logging 95

4.14 JavaScript Interop 97
4.14.1 Calling JavaScript from .NET . . . 97
4.14.2 Calling .NET from JavaScript . . . 101
4.14.3 npm packages in Blazor 105

5 Blazor in the real world 107
5.1 In the Cloud 107

5.1.1 Publishing to Azure 108
5.1.2 Azure AD B2C 108
5.1.3 Serverless architectures 110

5.2 Mobile & Desktop 111
5.2.1 Progressive Web Applications . . . 111

5.3 Blazor Libraries 113
5.4 What’s Next? 114

6 CONTENTS

Chapter 1

Introduction

JavaScript is the duct tape of the Internet.
- Charlie Campbell

1.1 Pain points
Let us begin by having a look at the issues of modern web
development today. Typically a JavaScript framework like
Angular is needed for data-binding, routing etc.

For a back-end developer looking to transition to front-
end development, the learning curve can be rather steep.
Designing a stable architecture let alone figuring out where
to begin can be the most daunting task often leading to a
lot of trial and error before gaining some sort of expertise

7

8 CHAPTER 1. INTRODUCTION

in the area. And by the time you have it all figured out, a
new framework comes out and replaces it.

Current web development frameworks are very opinion-
ated. Usually they give the impression that you have the
freedom to create anything you want in any way you want
to but in reality one typically has to follow strict paradigms.
The introduction of hooks in the React framework is one
example of howdevelopers to some extent become restricted
to guidelines set by the creators of the framework.

Another problem with modern web development is the de-
pendencies on 3rd party software. For a typical React project
you have to choose a toolchain including a packet manager
(npm, Yarn etc.), a bundler (webpack, Parcel, etc.) and a
transpiler such as Babel. Picking the right tools is a very
difficult task in which you have to take a lot of information
into consideration e.g. to what degree you want to allow
yourself to depend on them and what the consequences
might be.

Modern frameworks and third party software become ob-
solete very fast if not maintained. Web development has
evolved at a very quick rate in the last decade and is still
constantly changing. There is always some update to your
npm packages and you never know how they will affect
your software or if the tutorial you are following is up to
date.

1.1. PAIN POINTS 9

The JavaScript language itself has its issues being weakly
dynamically typed, having some quirky behaviour and not
being themost intuitive language. You typically need Type-
script to make it bearable (i.e. another dependency) and
by then it almost starts to look and behave like C#. As
WebAssembly starts to become a viable option for running
code in the web browser, we might start to see a decline of
the importance of JavaScript.

Another problem is the way there is a gap between the
frontend and the backend which needs to be bridged. We
typically need to translate back-end C# classes/models to
Typescript interfaces and do lots of serialization and dese-
rialization for conversion between types and classes.

10 CHAPTER 1. INTRODUCTION

1.2 History
2002 .NET Framework 1.0
2006 Silverlight

C# apps could run in the browser
2007 Android & iOS

No extensions allowed inmobile browsers
2007 HTML 5
2010 Angular

Viable option for apps inmobile browsers
2011 Silverlight 5

Silverlight discontinued
2013 asm.js

C/C++ code in the browser
2013 React
2016 .NET Core
2017 WebAssembly

C# code in the browser
2017 Blazor announced (Steve Sandersson)
2019 Blazor Preview (Daniel Roth)
2019 .NET Core 3.0
2019 Blazor Server
2020 .NET Core 3.1
2020 BlazorWebAssembly
2021 .NET 6
2021 Blazor LTS

1Inspiration from William Liebenberg https://www.ssw.com.au/
people/william-liebenberg

https://www.ssw.com.au/people/william-liebenberg
https://www.ssw.com.au/people/william-liebenberg

1.3. WHAT IS BLAZOR? 11

1.3 What is Blazor?
Blazor is a single pageweb app framework built onASP.NET
that runs in the browser via WebAssembly. The name Bla-
zor is a combination of Browser and Razor.

Razor

Razor is amarkup syntax for embedding server-based
code into webpages. The Razor syntax consists of
Razor markup, C#, and HTML. Blazor uses Razor
in component files with the .razor extension.

Blazor lets you build interactive web UIs with the use of
C# instead of JavaScript. This includes typical concepts
like reusable components, data-binding, routing and more.
Components are implemented using the familiar corner-
stones C#, HTML, and CSS. Both client and server code
is written in C# allowing code and libraries to be shared
seamlessly.

Blazor comes in two flavours. You can run your client-side
C# code directly in the browser usingWebAssembly much
like the React, Angular or Vue frameworks. This is called
Blazor WebAssembly (or Blazor WASM).

The other alternative is to run client-side code on the server
which outputs HTML to the browser. Client UI events are
communicated using SignalR technology and the changes
are merged into the DOM dynamically. [1]

12 CHAPTER 1. INTRODUCTION

1.4 WhyBlazor?
• .NET framework in the browser: All familiar
tools of .NET Core can be used with no other de-
pendencies. Code can also be shared between client
and server enabling less duct taping.

• No plugins required: Blazor is using open web
standards on both older and new browsers running
HTML and CSS with no requirement for any exter-
nal plugin. Blazor is NOT Silverslight.

• .NET based SPA framework: Like all modern
web development frameworks Blazor operates dynam-
ically on the DOM, requires no refreshing of the web
browser and supports routing.

• Razor templatingengine: Components are easily
expressed using Razor markup, C# and HTMLmak-
ing switching from Razor pages to Blazor a pleasant
experience.

• Use existing .NET NuGet packages: All your
favorite NuGet packages can be reused to empower
your Blazor applications.

• NoJavaScript necessary: If required JavaScript is
easily integrated into your Blazor apps using Interop
calls but is not at all required for a fully functional
app.

• WebAssembly:WebAssembly is designed to enable

1.4. WHY BLAZOR? 13

near-native code execution speed in web browsers.
Since WebAssembly is valuable other contexts than
browsers it has a lot of potential for future web sys-
tems.

• Built tobestable foryears: Blazor is free and open
source with a strong community being backed byMi-
crosoft. It is a modern, fun and exciting addition to
the current flora of web development frameworks.

14 CHAPTER 1. INTRODUCTION

Chapter 2

Background

2.1 The .NETFramework
The .NET framework is a stable, free, cross-platform, open
source developer platform for building applications for desk-
top, mobile, games, web andmore. The framework is heav-
ily tested, well supported and has been optimized for per-
formance, reliability and security over its lifetime.

.NET includes a managed runtime, a standard set of li-
braries and support formultiplemodern and innovative pro-
gramming languages like C# and F# making programming
versatile and fun for beginners as well as experts.

.NET 5 is the latest version of the framework and is the
successor of .NET Core 3.x. It is not to be confused with

15

16 CHAPTER 2. BACKGROUND

.NET Framework 4.x although it incorporates most of its
features making .NET 5 the main implementation of .NET
going forward.

Note

.NET Framework 4.x is still supported as tech-
nologies like Web Forms (replaceable by Blazor),
Windows Communication Foundation (WCF) and
Windows Workflow (WF) are still used.

ASP.NET Core 5 is a .NET web development framework
offering standard tools and libraries for building web ap-
plications. Web applications can be built using ASP.NET
Core using Razor pages,MVCor Blazor. It can also be used
to build RESTfulHTTPAPI endpoints, remote procedure
call app (gRPC) or real time applications using SignalR (also
used for Blazor Server apps).

The Visual Studio IDE provides a solid experience for de-
velopment onWindows, Linux andmacOS enabling the de-
veloper seamless integration between client and server.

2.1. THE .NET FRAMEWORK 17

Desktop
WPF
Windows Forms
UWP

Web
ASP.NET
Blazor

Cloud
Azure

Mobile
Xamarin

Gaming
Unity

IoT
ARM32
ARM64

AI
ML.NET

.NETStandard
.NET 5
Infrastructure

Runtime Components
Compilers
Languages

Visual Studio
VS forMac
VSCode
CLI

Figure 2.1: The .NET platform.

18 CHAPTER 2. BACKGROUND

2.2 WebAssembly
WebAssembly (WASM) is a portable binary-code language
resembling the .NET IL code first announced in 2015 and
being a standard web technology since 2017. It became a
WorldWideWebConsortium recommendation inDecem-
ber 2019 and is now supported by allmodernweb browsers.

Unlike the other languages running natively in the browser
(HTML, CSS and JavaScript), WebAssembly runs at near
native speed and requires no parsing or compilation steps
before execution asWebAssembly is a binary format.

BothWebAssembly and JavaScript runs within a controlled
environment called the JavaScriptRuntime (V8 engine) pro-
viding a single thread for each tab or domain. This enables
WebAssembly to call JavaScript functions and vice-versa
efficiently.

In order to run .NET binaries code in the web browser, Bla-
zor comes with a .NET Runtime compiled in WebAssem-
bly called dotnet.wasm. This runtime is based on the mono
runtime and enables IL code to be executed within a We-
bAssembly context.

When your browser loads a Blazor WebAssembly app it
loads the script dotnet.webassembly.js. This script downloads
the required system DLLs and boots the .NET runtime.
Since a WebAssembly app cannot directly manipulate the
DOM, this script also wires upp all DOM elements (but-
tons etc.) with the IL code.

2.3. SIGNALR 19

Intermediate Language

During compilation, source code (e.g. C#) is
converted into Intermediate Lanuage (IL) platform
independent code. The IL code is then converted
intomachine code by the JIT (just-in-time) compiler.

2.3 SignalR
Blazor Server apps utilize the ASP.NETCore SignalR tech-
nology which is a real-time messaging framework. Each
client using your Blazor Server app uses one or more Sig-
nalR connections.

Blazor uses an abstraction over the SignalR connections
called a circuit. Circuits allow temporary network inter-
ruptions and attempts to reconnect should the connection
be disconnected. The circuit will then create a new SignalR
connection. [2]

Each browser screen (tab or iframe) connected to your app
will use a SignalR connection (as well as a separate instance
of component state). When closing a tab or navigating to
an external URL, Blazor Server will try to perform a grace-
ful termination. When a graceful termination occurs, the
circuit and associated resources are immediately released.
In the case of non-graceful disconnections (e.g. due to net-
work interruption), Blazor Server will store disconnected

20 CHAPTER 2. BACKGROUND

circuits for a configurable interval to allow the client to
reconnect without losing state.

A Blazor Server app will prerender in response to the first
request from the client. This will in turn set up theUI state
on the server and the client will attempt to create a SignalR
connection to that server. The client must then reconnect
to the same server.

An appwhich requiresmore than one backend server should
implement sticky sessions for SignalR connections. You
can do this via the Azure SignalR Service for Blazor Server
apps or similar. This will allow for scaling up the Blazor
Server app to large amounts of concurrent SignalR connec-
tions. [3]

2.4 TheVirtual DOM
Any time an attribute of anHTML element is changed (e.g.
width, height, padding, margin etc.) the browser must re-
flow the elements on the page before rendering them. This
render tree is called the document-object-model (or DOM)
and the act of updating it is usually very CPU intensive
when performing lots of updates.

Client-side tools like React and Angular both implement
something called the Virtual DOM used as an in-memory
representation of the elements that willmake up theHTML
page. This data creates a tree of HTML elements as if they
had been specified by an HTML mark-up page.

2.4. THEVIRTUALDOM 21

Both Blazor Server and BlazorWebAssembly uses a virtual
DOM generated by the compiler. Each razor page contains
a BuildRenderTreemethod accepting a RenderTreeBuilder
object which contains code to build the virtualDOM. [4]

The virtual DOM offers two benefits:

1. The attribute values of virtual HTML elements can
be updated many times in code during complex up-
date processes without the browser having to re-render
and reflow the view until the process is finished. This
greatly improves the performance of apps.

2. Render trees can be created by comparing two trees
and building a new tree that is the difference between
the two. The diff tree offers the ability to represent
changes to the view using the smallest number of changes
possible to update theDOM.This is called the Incre-
mental DOM technique and improves the UX (e.g.
when changing the display).

For BlazorWebAssembly apps the virtualDOM is also used
to optimize calls between JavaScript andWebAssemblymin-
imizing the amount of data exchanged.

For Blazor Server the events and the diffs in the clientDOM
are transferred to the server holding the virtualDOMwhich
is then updated and rendered appropriately. The Incre-
mental DOM technique enables Blazor Server apps to send
fewer bytes over the network making them more usable on
slow networks.

22 CHAPTER 2. BACKGROUND

Chapter 3

Blazor variants

Both Blazor WebAssembly and Blazor Server are based on
ASP.NET Razor syntax which is a mix of HTML, C# and
specific Blazor tags in order to create dynamic web pages.
Both variants compiles to regular .NET Core and .NET
Standard DLLs.

3.1 Choosing your flavour

Before creating your application you should decide which
variant of Blazor to use. This section describes the main
points to take into consideration.

23

24 CHAPTER 3. BLAZORVARIANTS

3.1.1 BlazorWebAssembly
Pros

• .NET: .NET Code in the browser with no need for
external plugins.

• WebAssembly: Near native speed thanks to We-
bAssembly performance and in-browser computation.

• Shared code: Code previously used on the server
like validation can be shared via libraries and used in
the client.

• Reduced server load: No server-side dependency
means any server load is significantly reduced.

• Scalabilityandofflinesupport: Scalable for server-
less and offline scenarios. The whole page can be
provided via Content Delivery Network (CDN).

• PWA: It can run as a Progressive Web App (PWA)
meaning the client can choose to install the app onto
their device and run it without network access.

Cons

• Size: Initial download size is around 700kb which
is not good for users with limited connection, search
engines and algorithms alike.

• Browser compatability: Blazor WebAssembly is
not supported by Microsoft Internet Explorer. All

3.1. CHOOSINGYOUR FLAVOUR 25

modern browsers support Blazor.

• Limited browser sandbox: Blazor runs in the se-
cure but somewhat limited WebAssembly sandbox.
WebAssembly is not aware of theDOMbut re-renders
pages whenever needed.

• Toolingstillneedstomature:Debugging ismainly
done through the debugging tab in the browser and
bugs can be hard to find.

• Secrets: Code executed within the browser cannot
embed secrets like connection strings

3.1.2 Blazor Server
Pros

• Size: No initial download size and the page load is
lightweight.

• Server-Side Rendering (SSR): All elements are
compiled on the server and served as HTML to the
client.

• Faster loadtime:Heavy-lifting is done on the server
making the client download significantly smaller.

• Browsercompatability:Works on older browsers.
Even those without WebAssembly support.

• Tooling:Debugging is done on the server side inside
the familiar and robust Visual Studio IDE.

26 CHAPTER 3. BLAZORVARIANTS

• Secrets: API/Server code is private allowing for se-
crets in the code.

Cons

• Hosting: You need anASP.NETCore server and the
app cannot be served from a CDN.

• Latency: Every user interaction requires a network
hop (using SignalR).

• Scalability: States of connected clientsmust beman-
aged, typically requiring about 85kb of process mem-
ory per connection.

• No offline support: If the connection is lost, the
application stops working.

3.2. SETTINGUP YOUR ENVIRONMENT 27

3.2 Settingupyourenvironment
Start by downloading and installing the .NET SDK (Soft-
ware Development Kit) from the official Microsoft web-
site.

Also make sure to download and install Visual Studio or
Visual Studio Code for your OS of choice (you can create
Blazor apps fromVisual Studio if you prefer it over the con-
sole). Verify that the installation is successful by outputting
the .NET version in the console:

dotnet --version

3.3 BlazorWebAssembly
With BlazorWebAssembly, the browser itself hosts Blazor.
When the app is opened in the browser, several files are
downloaded:

The filesmono.js andmono.wasmmake up theWebAssembly
version of the Mono compiler.

The script blazor.webassembly.js downloads the .NET run-
time, the app with its dependencies and initializes the run-
time. It uses the Mono runtime to execute .NET code (lo-
cated in theBlazorwasm.dll file) directly in the browser.

The application itself is then mostly autonomous handling
user actions events directly in the browser without any call-
backs to a server.

28 CHAPTER 3. BLAZORVARIANTS

3.3.1 YourfirstBlazorWebAssemblyApp
Open your console and navigate to a path of your choice.
Then type:

dotnet new blazorwasm -o BlazorWasmApp

This will create a new Blazor web assembly app. The -o
command tells dotnet to create a new folder called Blazor-
WasmApp in which it will place the code. Navigate to this
folder using the command:

cd BlazorWasmApp

Running the app is now as simple as typing:

dotnet run

Open your web browser of choice and navigate to:

http://localhost:5000

(or whatever the console says) and voila! Your Blazor We-
bAssembly App is up and running. Exit by typing Ctrl+C
or equivalent.

Tip

Type dotnet watch run in the console for automatic
builds!

http://localhost:5000

3.3. BLAZORWEBASSEMBLY 29

3.3.2 Project Structure
Program.cs: The entry point of the app. The
WebAssemblyHostBuilder builds the hosting environment
of the web application. This is the location where services
are added to the app.

wwwroot folder: Contains the static resources of the app.
The file index.html contains the basic HTML structure
most notably the <app> element specifying the location of
the app component and the blazor.webassembly.js script el-
ement which downloads DLLs and initializes the runtime
of the app.

App.razor: The root component of the app used for set-
ting up the routing using the <Router> component which
in turn intercepts browser navigation and renders the page
matching the requested address.

Shared folder: Contains UI components used by the app.
MainLayout.razor is the layout component of the app which
in turn sets up the side bar (<NavMenu>), the top bar and the
main body (@Body) of the application where the pages are
rendered. The NavLink component of NavMenu.razor is
used for rendering navigation links to other components.

Pages folder: Contains the routable components and pages
used for your Blazor app. The route for each page is spec-
ified using the @page directive at the top of component
files.

30 CHAPTER 3. BLAZORVARIANTS

Program.cs

index.html

App.razor (root)

MainLayout.razor
(including @Body)

Figure 3.1: Blazor WebAssembly application flow.

3.4. BLAZOR SERVER 31

3.4 Blazor Server
When running Blazor Server, an ASP.NET Core applica-
tion hosts it on the server side. Most user events from
the browser requires communication via SignalR which is a
two-way connection. Only 165KB of data is transferred to
the client making it lighter than its Blazor WebAssembly
counterpart (2.2 MB) and similar in size to tools like React
and Angular.

No actual C# runs on the client side and the browser only
has to deal with JavaScript, CSS andHTML. The script bla-
zor.server.js is served to the browser from an embedded re-
source in the ASP.NETCore shared framework. This file is
used for intercepting user events as well as establishing the
SignalR connection used for bi-directional communication
with the server. The client side of the app is expected to
persist and restore app state when needed.

SignalR messages can be tracked from the network tab of
your browser.

3.4.1 Your first Blazor Server App
Open your terminal and navigate to a path of your choice.
Then type:

dotnet new blazorserver -o BlazorServerApp

This will create a new Blazor server app. The -o command
tells dotnet to create a new folder called BlazorServerApp

32 CHAPTER 3. BLAZORVARIANTS

in which it will place the code. Navigate to this folder using
the command:

cd BlazorServerApp

Running the app is now as simple as typing:

dotnet run

Open your web browser of choice and navigate to:

http://localhost:5000

(or whatever the console says) and voila! Your Blazor Server
App is up and running. Exit by typing Ctrl+C or equiva-
lent.

Tip

Type dotnet watch run in the console for automatic
builds!

3.4.2 Project Structure
Program.cs: The entry point of the app used for setting
up the ASP.NET Core host.

Startup.cs: Contains the startup logic of the app defin-
ing two methods: ConfigureServices used for configur-
ing dependency injection (DI) of the app. This is the lo-
cation where services are added. The Configure method
sets up request handling pipelines of the app (including the

http://localhost:5000

3.4. BLAZOR SERVER 33

MapBlazorHub endpoint used for establishing the SignalR
connection with the browser).

Pages folder: Contains the routable components/pages
used for your Blazor app along with the root Razor page
Pages/_Host.cshtml and the Error page. The route for each
page is specified using the @page directive at the top of
component files.

App.razor: The root component of the app used for set-
ting up the client-side routing using the <Router> compo-
nent which in turn intercepts browser navigation and ren-
ders the page matching the requested address.

Shared folder: Contains UI components used by the app.
MainLayout.razor is the layout component of the app which
in turn sets up the side bar (<NavMenu>), the top bar and
the main body (@Body) of the application where the pages
are rendered. The NavLink component of NavMenu.razor
is used for rendering navigation links to the other compo-
nents.

_Imports.razor: Contains common directives to include
in components e.g. layouts, components and namespaces.

34 CHAPTER 3. BLAZORVARIANTS

Program.cs

Startup.cs

_Host.cshtml

App.razor (root)

MainLayout.razor
(including @Body)

Figure 3.2: Blazor Server application flow.

Chapter 4

Blazor in-depth

4.1 Components
Blazor components are used as smaller units of reusable
code for applications. A component consists of three parts:

• Directives: Directives are used for routing, import-
ing libraries, injecting services etc. and are located at
the top of components.

• Markup & Razor: The markup is located in the
middle of the component and represents what is dis-
played to the user.

• Code&Logic : At the bottom the variables, meth-
ods and lifecycle events of components are handled.

35

36 CHAPTER 4. BLAZOR IN-DEPTH

The initial Blazor template comes with three pages (Index,
FetchData and Counter). These are components with the
@page directive defined at the top of the files. This means
we can access them in the browser through routing (e.g.
localhost:5000/Counter).

You can create a component which is not a page by omit-
ting the @page directive. Both non-page components and
page components can be added to any other component
through HTML (e.g. <Counter></Counter>). A non-page
component cannot be accessed through routing.

4.2 Code-behind
The default component architecture is to have all markup
and logic within a single .razor file. This works for simple
components but as complexity increases it is preferable to
separate the parts of components into separate files. This
is achieved using the code-behind approach:

Create a file [componentName].razor.cswhere [componentName]
is the component for which you want to use code-behind.
The .razor.cs extension is recognized by Visual Studio and
is properly nested within the file explorer.

Because the component already occupies the class name
the new class must use the partial keyword e.g.:

localhost:5000/Counter

4.3. PASSINGDATA BETWEENCOMPONENTS 37

public partial class Counter {
...
}

Most of the code from the @code block can be copied from
the .razor file to the partial class with a few possible changes:

• Additional using statements may be required.

• Dependency Injection is written differently using the
[Inject] attribute applied to properties directly in-
stead of using the @inject directive.

4.3 Passingdatabetweencomponents
Imagine a shopping cart containing multiple component
items. If you increase the quantity of one item we want
the shopping cart to respond to this action and recalculate
the total price.

It is often the case that components include sub-components
that needs to communicate with each other. This is where
data passing comes into the picture.

4.3.1 Parameters
By passing parameters to a component we can communi-
cate from parent to child.

Change the private variable currentCount of Counter.razor
to:

38 CHAPTER 4. BLAZOR IN-DEPTH

[Parameter]
public int CurrentCount { get; set; }

The initial value of the counter can now be set from the
parent by adding the component with an initial value:

<Counter CurrentCount=”4”></Counter>
<Counter CurrentCount=”7”></Counter>

Create a new page DataPassing.razor and add the two lines
above. The two counters on the page will now start out
with displaying the values 4 and 7.

4.3.2 Routing parameters
Routing parameters are used to pass data to a page com-
ponent. Let us begin by making the Counter header click-
able.

Add the following code to the Counter component:

<h1>

Counter

</h1>

We will now pass the current count of the component into
the routing parameter of the Counter page.

4.3. PASSINGDATA BETWEENCOMPONENTS 39

Tip

To navigate from one page to another
using C# code we can inject a navigation
manager @inject NavigationManager Nav
and then call it from the @code block:
Nav.NavigateTo(”Counter”);.

To allow the routing parameter into the component, we
need to add it as follows:

@page ”/counter”
@page ”/counter/{CurrentCount:int}”

Note that we still allow the previous routing parameter with-
out the current count (first directive).

Also note that if the routing parameter is present it will be
cast to an integer. Since the current count is a property
it will otherwise be set to the default value of 0 on page
load.

Tip

Routing parameters can have different types e.g.
datetime, int, guid, long, bool, decimal, float and
double.

40 CHAPTER 4. BLAZOR IN-DEPTH

4.3.3 Cascading parameters
Say you have a larger tree of parent/child components and
you want to pass data to the leaf component. This could be
achieved through regular parameters but another way to do
it is to use cascading parameters.

Create a new folder called Components and create a file
DisplayCounterComponent.razor. Make sure to include the
folder in _Imports.razor:

@using BlazorWasmApp.Components

Open the newly createdDisplayCounterComponent.razor and
add the following code:

<p style=”color: @CounterColor”>
Current count: @CounterValue

</p>

@code {
[CascadingParameter(Name = ”CounterValue”)]
public int CounterValue { get; set; }

[CascadingParameter(Name = ”CounterColor”)]
public string CounterColor { get; set; }

}

This will display the CounterValue of a counter in the color
CounterColor. Both values will be passed down from its
parent components. Open Counter.razor and replace the

4.3. PASSINGDATA BETWEENCOMPONENTS 41

previous counter HTML code to:

<CascadingValue Name=”CounterValue”
Value=”@CurrentCount”>

<DisplayCounterComponent>
</DisplayCounterComponent>

</CascadingValue>

Here we cascade the CurrentCount value as CounterValue
for theDisplayCounterComponent component. Aswe still
lack the CounterColor value, we need to add it inDataPass-
ing.razor:

<CascadingValue Name=”CounterColor”
Value=”@(”red”)” IsFixed=”true”>

<Counter CurrentCount=”4”></Counter>
</CascadingValue>
<CascadingValue Name=”CounterColor”

Value=”@(”blue”)” IsFixed=”true”>
<Counter CurrentCount=”7”></Counter>

</CascadingValue>

The first counter will now have a red color and the second
a blue. Note that the Counter component does not know
anything about CounterColor. This is the power of cascad-
ing parameters.

Cascading parameters can have a performance hit on ap-
plications as it needs to keep track of more data. To im-
prove upon performance, add IsFixed=”true” wherever
you know the value will not change during runtime.

42 CHAPTER 4. BLAZOR IN-DEPTH

Another thing to keep in mind is that cascading parame-
ters can be hard to maintain if overused as they cannot be
tracked in Visual Studio.

4.3.4 Event callbacks
To pass data from a child component to a parent we can
use something called Event callbacks. Event callbacks are
similar to delegates but which also re-renders the parent
component after called.

Add the event callback to the Counter component as fol-
lows:

@code {
...
[Parameter]
public EventCallback<int>

SetCounter { get; set; }

private void IncrementCount()
{

...
SetCounter.InvokeAsync(CurrentCount);

}
}

The SetCounter callback will be invoked when the value
of the button component is incremented. Now, let’s add
functionality to DataPassing.razor:

4.3. PASSINGDATA BETWEENCOMPONENTS 43

<CascadingValue>
<Counter ...

SetCounter=”@((val) => counters[0] = val)”>
</Counter>

</CascadingValue>
<CascadingValue>

<Counter ...
SetCounter=”@((val) => counters[1] = val)”>

</Counter>
</CascadingValue>

<p>Sum: @(counters[0] + counters[1])</p>

@code {
private int[] counters = new int[] { 4, 7 };

}

In the code block we add an array for the counter values
held by the DataPassing component. We display the sum
of the two counters in the paragraph.

The SetCounter parameter is set for the two Counter com-
ponents and the value val is passed from child to parent.
These values are then used to update the counters array and
output the sum.

4.3.5 The ref attribute
Elements in the HTML can be referenced by code using
the ref attribute. In DataPassing.razor add the following

44 CHAPTER 4. BLAZOR IN-DEPTH

code:

<CascadingValue ...>
<Counter @ref=”counterComponent1” ...>
</Counter>

</CascadingValue>
<CascadingValue ...>

<Counter @ref=”counterComponent2” ...>
</Counter>

</CascadingValue>
...
<button

class=”btn btn-secondary”
@onclick=”DisableCounters”>

Disable counters
</button>

@code {
...
private Counter counterComponent1;
private Counter counterComponent2;

private void DisableCounters()
{

counterComponent1.DisableCounter();
counterComponent2.DisableCounter();

}
}

We add the @ref attribute to theHTMLCounter elements

4.3. PASSINGDATA BETWEENCOMPONENTS 45

which in turn links them to the Counter variables in the
code block.

The ”Disable counters”-button calls the DisableCounters()
method when clicked. This method in turn invokes the
method DisableCounter() on the two Counter components.

Let us add the code to disable the ”Increment”-button in
Counter.razor:

...
<button ... disabled=”@Disabled”>Click me</button>

@code {
...
private bool Disabled { get; set; }
...
public void DisableCounter()
{

Disabled = true;
}

}

The ”Disable counters”-button on the DataPassing page
will now trigger the DisableCounter()method in theCounter
child components which disables their respective buttons.

46 CHAPTER 4. BLAZOR IN-DEPTH

4.4 Data binding
Data binding is used for communicating information be-
tween the user interface and the data layer. In a one-way
data binding, data is only transferred from the data layer
to the UI. In a two-way data binding, data is transferred in
both ways (e.g. when the user edits an input field).

Let us begin by creating a new page calledDataBinding.razor
defining a @code block:

@code {
class Person
{

public string Name { get; set; }
public int Age { get; set; }
public bool OpenToWork { get; set; }
public List<string> Skills { get; set; }
public int MainSkill { get; set; }

}

Person person = null;

public string NewSkill;

public void AddSkill()
{

person.Skills.Add(NewSkill);
NewSkill = ””;

}

4.4. DATA BINDING 47

protected override void OnInitialized()
{

base.OnInitialized();

person = new Person()
{

Name = ”Johan”,
Age = 31,
OpenToWork = true,
Skills = new List<string> {

”C#”,
”Java”,
”Python” },

MainSkill = 1
};

}
}

Wedefine a class Personwithmembers Name, Age, a boolean
OpenToWork, a list of skills and an integer representing the
main skill of the person. The method OnInitialized()
runs when the component is initialized and is in this exam-
ple used for initializing the person object.

Note the NewSkill variable, it will be used for the two-way
binding of the input field where new skills are added and in
the AddSkill method.

48 CHAPTER 4. BLAZOR IN-DEPTH

4.4.1 One-way data binding

A simple way to bind the data of the Person class to the
interface is to implement it as follows:

<h2>One-way</h2>
<p>

Person: @person.Name
@if (person.OpenToWork)
{

- Open to work!
}

</p>
<p>

Age: @person.Age
</p>
@if (person.Skills.Count > 0) {

Skills:

@for (var i = 0;
i < person.Skills.Count;
i++)

{

@person.Skills[i]
@if (i == person.MainSkill)
{

 - Main
}

4.4. DATA BINDING 49

}

}

The @person directive references the person variable. We
can also reference its class variables using @person.Name,
@person.Age and @person.OpenToWork as shown in the ex-
ample above.

If- and for statements are handled by prepending the state-
ments with @ (i.e. @if, @for or @foreach). Note that it is
possible to call methods directly on the objects
(e.g. person.Skills.Count).

4.4.2 Two-way data binding
Let us add some input elements to the interface for updat-
ing the data layer as follows:

<h2>Two-way</h2>
<p>

<input type=”number”
@bind-value=”person.Age”
@bind-value:event=”oninput” />

<label>
<input type=”checkbox”

@bind=”person.OpenToWork” />
Open for work

50 CHAPTER 4. BLAZOR IN-DEPTH

</label>
</p>

<p>
@for (var i = 0;
i < person.Skills.Count;
i++)
{

var id = i;
<label>

<input type=”radio”
value=”@id”
name=”mainskill”
checked=

”@(person.MainSkill == id)”
@onclick=

”@(() => person.MainSkill = id)”
/>
@(id + 1)

</label>
}

<select @bind=”person.MainSkill”>
@for (var i = 0;

i < person.Skills.Count;
i++)

{
var id = i;
<option value=”@id”>

4.4. DATA BINDING 51

@person.Skills[id]
</option>

}
</select>

</p>

<p>
<label>

<input type=”text” @bind-value=”@NewSkill” />
<button @onclick=”AddSkill”>Add skill</button>

</label>
@NewSkill

</p>

The first and second input fields are used for manipulating
the person’s Age and OpenToWork-status. Note the usage
of @bind-value along with @bind-value:event set to on-
input. @bind is an override of @bind-value with the event
set to onchange. Based on the event type the value will be
updated whenever the input is edited or when the user is
done editing (has clicked somewhere else).

In the second paragraph we create radio buttons for the
skills of the person using a for-loop. Note that we need to
store the index in a separate variable (id) if it is to be used in
function calls (e.g. @(() => person.MainSkill = id)).

Below the radio buttons we have a drop-down variant of the
radio-button solution for changing the main skill among
the skills.

52 CHAPTER 4. BLAZOR IN-DEPTH

In the last paragraph we have an input field which binds
to the variable NewSkill. When the ”Add skill”-button is
clicked the AddSkill method is called which in turn uses
the NewSkill value for adding a new skill to the person.

Note how the data layer is updated dynamically when age,
status, main skill or skills are added in the user interface.

4.5 Templated Components
A templated component takes one or more UI templates
as parameters which are then used as part of the templated
component. This allows for higher-level components that
are more reusable than regular components. In this chap-
ter, we will work with the component FetchData.razor in-
cluded in default Blazor projects.

4.5.1 Template parameters
Create a new component called TableTemplate.razor and add
the following code:

@typeparam TItem

<table class=”table”>
<thead>

<tr>@TableHeader</tr>
</thead>
<tbody>

4.5. TEMPLATED COMPONENTS 53

@foreach (var item in Items)
{

<tr>@RowTemplate(item)</tr>
}

</tbody>
</table>

@code {
[Parameter]
public RenderFragment TableHeader { get; set; }

[Parameter]
public RenderFragment<TItem> RowTemplate { get; set; }

[Parameter]
public IReadOnlyList<TItem> Items { get; set; }

}

The @typeparam is used to specify the type parameters for
the component.

Tip

If the type cannot be inferred automatically, we need
to add the attribute TItem=”WeatherForecast” to
the TableTemplate component in FetchData.razor.

The component uses two render fragments representing
segments of the UI to be rendered (TableHeader and

54 CHAPTER 4. BLAZOR IN-DEPTH

RowTemplate). These are used for the header and the rows
of the component.

The table data to be displayed is stored in the list Items.
Because RowTemplate and Items uses generics, we are not
interested inwhat the items represent in this component.

Open FetchData.razor and change the previous HTML for
the table to:

<TableTemplate Items=”forecasts”>
<TableHeader>

<th>Date</th>
<th>Temp. (C)</th>
<th>Temp. (F)</th>
<th>Summary</th>

</TableHeader>
<RowTemplate>

<td>@context.Date.ToShortDateString()</td>
<td>@context.TemperatureC</td>
<td>@context.TemperatureF</td>
<td>@context.Summary</td>

</RowTemplate>
</TableTemplate>

The forecasts are now passed through the Items attribute
and the type of its elements is generally inferred. We now
have the same output as before but with more reusable
code.

4.5. TEMPLATED COMPONENTS 55

4.5.2 Template context parameters
The @context parameter in the previous example (4.5.1) is
implicit and represents the TItem type for the render frag-
ments of the TableTemplate component.

By adding the Context attribute on child elements we can
achieve better readability:

...
<RowTemplate Context=”forecast”>

<td>@forecast.Date.ToShortDateString()</td>
...

Alternatively, we can add the Context attribute to the com-
ponent and have it apply to all specified template parame-
ters:

<TableTemplate Items=”forecasts” Context=”forecast”>
...
<RowTemplate>

<td>@forecast.Date.ToShortDateString()</td>
...

56 CHAPTER 4. BLAZOR IN-DEPTH

4.6 Lifecycle&renderingtriggers
Lifecycle events are used to perform additional operations
on components when initialized, rendered etc.

4.6.1 Component Lifecycle Events
If the app is rendering for its first time the instance of the
component is created and then enters its lifecycle.

Setting parameters

The parent of the component in the render tree sets the
parameters of a component using the SetParametersAsync
method.

The SetParametersAsyncmethod accepts a ParameterView
object which in turn has corresponding values to the
[Parameter] and [CascadingParameter] attribute proper-
ties explained in previous chapters (4.3.1, 4.3.3).

The SetParametersAsync method by default invokes
base.SetParametersAsync. If removed there will be no re-
quirement to assign the incoming parameters to properties
of the class.

Component initialization

After parameters are set, the async method OnInitialized
or OnInitializedAsync is performed. Use the async vari-
ant when the component should be refreshed upon per-
forming asynchronous operations:

4.6. LIFECYCLE & RENDERING TRIGGERS 57

protected override async Task OnInitializedAsync()
{

await ...
}

Tip

Blazor Server applications that pre-render their con-
tent will call OnInitializedAsync twice: Statically
as part of the page and when the connection to the
server is established.

After parameters are set

A call to async method OnParametersSet or
OnParametersSetAsync is performed after parameters are
set. If no Task is returned, the component is rendered
immediately. Otherwise the Task is awaited followed by
the component being rendered.

OnParametersSet is also called when the parent compo-
nent is re-rendered and supplies primitive immutable types
where at least one parameter has changed along with any
complex-typed parameters.

58 CHAPTER 4. BLAZOR IN-DEPTH

After component is rendered

Themethods OnAfterRender and OnAfterRenderAsync are
called when the component has finished rendering. Since
element component references are populated at this point
it is a good place to make JS Interop calls (4.14) on rendered
DOM elements.

Tip

The firstRender parameter of OnAfterRender and
OnAfterRenderAsync is set to true if the component
is rendered for its first time. Use it to your advantage.

Note also the ShouldRender method called each time the
component is rendered except on initial rendering. If over-
ridden, the developer can suppress rendering by returning
the value false.

DOMevent processing

Document Object Model (DOM) processing is performed
wheneverUI events are triggered (e.g. a button is clicked):

The event handler is run. If no Task is returned, the com-
ponent is rendered immediately. Otherwise the Task is
awaited followed by the component being rendered.

4.6. LIFECYCLE & RENDERING TRIGGERS 59

TheRender lifecycle

The Render lifecycle is performed when component state
is changed:

If the component hasn’t rendered for the first time or the
component member ShouldRender is evaluated as false no
further operations are performed on the component. Oth-
erwise the render tre difference (diff) is built followed by
the component being rendered.

Finally the DOM is awaited to update followed by a call to
async method OnAfterRender.

The ShouldRender variable can be set using code:

@code {
protected override bool ShouldRender() => false;
...

}

State changes

Use the method StateHasChanged() to notify the app that
its state has changed. This will cause the component to be
re-rendered.

StateHasChanged() is called automatically for
EventCallback methods.

60 CHAPTER 4. BLAZOR IN-DEPTH

4.7 Forms andValidations
Blazor handles forms and validation using data annotations.
Create a new folderModels and add the file Character.cs with
the following code:

using System;
using System.ComponentModel.DataAnnotations;

namespace BlazorWasmApp.Models
{

public class Character
{

[Required]
[StringLength(16, ErrorMessage =

”Name too long (16 character limit).”)]
public string Name { get; set; }

public string Description { get; set; }

[Required]
public string Class { get; set; }

[Range(1, 100, ErrorMessage = ”
Age invalid (1-100).”)]

public int Age { get; set; }

[Required]
[Range(typeof(bool), ”true”, ”true”,

4.7. FORMSANDVALIDATIONS 61

ErrorMessage =
”Character is not approved.”)]

public bool IsApproved { get; set; }

[Required]
public DateTime CreatedDate { get; set; }

}
}

Validation attributes allows for validation rules on model
properties. Following are the built-in validation attributes:

• [Compare]: Two properties in the model match.

• [EmailAddress]: Has email format.

• [Phone]: Has telephone number format.

• [Range]: Falls within specified range.

• [RegularExpression]: Matches specified regular ex-
pression.

• [Required]: Is not null.

• [StringLength]: Does not exceed specified length.

• [Url]: Has URL format.

• [Remote]: Validates by calling an action method on
server.

62 CHAPTER 4. BLAZOR IN-DEPTH

Make sure to add the namespace to _Imports.razor:

...
@using BlazorWasmApp.Models

Create a newpageFormsValidation.razor and add the code:

@page ”/FormsValidation”

<h1>New Character Entry Form</h1>

<EditForm Model=”@character”
OnValidSubmit=”@HandleValidSubmit”>
<DataAnnotationsValidator />
<ValidationSummary />

<p>
<label>

Name:
<InputText @bind-Value=”character.Name” />

</label>
</p>
<p>

<label>
Description (optional):

<InputTextArea @bind-Value=
”character.Description” />

</label>
</p>
<p>

4.7. FORMSANDVALIDATIONS 63

<label>
Class:
<InputSelect @bind-Value=”character.Class”>

<option value=””>
Select class ...

</option>
<option value=”Warrior”>
Warrior

</option>
<option value=”Thief”>

Thief
</option>
<option value=”Magician”>

Magician
</option>

</InputSelect>
</label>

</p>
<p>

<label>
Age:
<InputNumber

@bind-Value=”character.Age” />
</label>

</p>
<p>

<label>
Is approved:
<InputCheckbox

64 CHAPTER 4. BLAZOR IN-DEPTH

@bind-Value=”character.IsApproved” />
</label>

</p>
<p>

<label>
Creation date:
<InputDate

@bind-Value=”character.CreatedDate” />
</label>

</p>

<button type=”submit”>Submit</button>

</EditForm>

@code {
private Character character = new Character() {

CreatedDate = DateTime.UtcNow
};

private void HandleValidSubmit()
{

...
}

}

The EditForm component is used to define a form which is
then validated using the data annotations defined in Char-
acter.cs. Make sure to add the DataAnnotationsValidator

4.7. FORMSANDVALIDATIONS 65

component to support validation. The ValidationSummary
component is used to display the validationmessages.

Tip

The EditForm component creates an EditContext as
a cascading value that tracks metadata about the edit
process (e.g. which fields have beenmodified and the
current validation messages).

EditForm also provides the useful events OnValidSubmit
and OnInvalidSubmit the former used to trigger the
HandleValidSubmit method when the form is successfully
submitted and has passed validation.

The value properties of the input elements are bound to the
model properties using @bind-Value. It also binds a change
event delegate to the input component’s ValueChanged prop-
erty.

66 CHAPTER 4. BLAZOR IN-DEPTH

4.7.1 Built-in form components
The built-in form components support arbitrary attributes
and provides default validation behavior when the field is
changed. This includes updating the CSS classes as well as
useful parsing logic (e.g. InputNumber<TValue> only treats
numbers as valid).

Some of the built-in form components support display names
using the DisplayName parameter. This allows its value to
be used in validation errors.

Following are the built-in components available:

• InputCheckbox

• InputDate<TValue> (Supports DisplayName)

• InputFile

• InputNumber<TValue> (Supports DisplayName)

• InputRadio

• InputRadioGroup

• InputSelect<TValue> (Supports DisplayName)

• InputText

• InputTextArea

4.7. FORMSANDVALIDATIONS 67

Tip

The InputFile component by default selects single
files but can be extended to multiple files using the
multiple attribute. When files are selected, the
component fires an OnChange event and passes in
InputFileChangeEventArgs which provides access
to the selected file list including file details. Files
are then read using Streams. For more information
visit https://docs.microsoft.com/en-us/aspnet/
core/blazor/file-uploads?view=aspnetcore-5.0

4.7.2 Fluent validation
Another way of doing validation is to use the FluentValida-
tion package. Start by adding it to your project:

dotnet add package Blazored.FluentValidation

Make sure to add it to Imports.razor:

@using Blazored.FluentValidation

Open Character.cs and add the validator:

using FluentValidation;
...
public class CharacterValidator :

AbstractValidator<Character>
{

public CharacterValidator()

https://docs.microsoft.com/en-us/aspnet/core/blazor/file-uploads?view=aspnetcore-5.0
https://docs.microsoft.com/en-us/aspnet/core/blazor/file-uploads?view=aspnetcore-5.0

68 CHAPTER 4. BLAZOR IN-DEPTH

{
RuleFor(x => x.Name).NotEmpty().Length(3, 16);
RuleFor(x => x.Class).NotEmpty();

}
}

OpenFormsValidation.razor and add the fluent validator:

...
@using Blazored.FluentValidation
...
<EditForm ...>

<FluentValidationValidator />
...

4.8 Dependency Injection
DI (Dependency Injection) is a technique used for access-
ing services configured in a central location. DI is useful for
decoupling components from concrete service classes and
more generally for code to be swapped more easily.

Blazor applications support the use of built in- and custom
services using DI. Following are default services added to
Blazor applications:

• HttpClient: Provides methods for sending and re-
ceivingHTTP requests and responses from a resource.
Only supplied by default in BlazorWebAssembly apps.

4.8. DEPENDENCY INJECTION 69

• IJSRuntime: Provides the JavaScript runtime from
which JavaScript calls are dispatched.

• NavigationManager: Contains helpers for work-
ing with URIs and navigation state.

Service lifetimes

• Scoped: The scoped lifetime is a concept in Blazor
Server apps where the service is to be used for the
scope of a connection (user). The service itself works
just like a Singleton service.

• Singleton: All components requiring a Singleton ser-
vice receive an instance of the same service. DI cre-
ates a single instance of the service.

• Transient: The component receives a new instance
of the service whenever the Transient service is ob-
tained from the service container.

70 CHAPTER 4. BLAZOR IN-DEPTH

4.8.1 BlazorWebAssemblyDI

Create a new folder Services and add the file EmailService.cs.
Open the newly created file and set up the basic structure:

namespace BlazorWasmApp.Services
{

public interface IEmailService
{

bool SendEmail(
string sender,
string address,
string subject,
string body);

}

public class EmailService : IEmailService
{

public bool SendEmail(
string sender,
string address,
string subject,
string body)

{
// insert implementation
return false;

}
}

}

4.8. DEPENDENCY INJECTION 71

Alsomake sure to add the line @using BlazorWasmApp.Services
to _Imports.razor.

We can now add the service to the Main-method of Pro-
gram.cs:

public static async Task Main(string[] args)
{

...
builder.Services.AddSingleton<EmailService>();

await builder.Build().RunAsync();
}

To use the service in a page. Inject the service using
@inject EmailService Email at the top of the file and call
it using Email.SendEmail(”...”, ”...”, ”...”, ”...”).

Note that services are injected after the component instance
is created and before it is initialized. You may therefore
want to call the service from the OnInitialized or
OnInitializedAsync method:

72 CHAPTER 4. BLAZOR IN-DEPTH

@page ...
@inject EmailService Email
...

@code {
...
protected override async Task OnInitializedAsync()
{

...
Email.SendEmail(””, ””, ””, ””);

}
...

}

4.8.2 Blazor ServerDI
Blazor Server dependecy injection works similar to Blazor
WebAssembly with a small difference in how the service is
added. Open Startup.cs and add the following code to the
ConfigureServices method:

public void ConfigureServices(
IServiceCollection services)

{
...
services.AddSingleton<IEmailService,

EmailService>();
...

}

4.8. DEPENDENCY INJECTION 73

The IServiceCollection is a list of service descriptor ob-
jects to which services are added. The services can then be
used in components in the same way described for Blazor
WebAssembly (4.8.1).

To inject a service into another service, the constructor is
used e.g.:

public class EmailService : IEmailService
{

public EmailService(HttpClient http)
{

...
}

}

74 CHAPTER 4. BLAZOR IN-DEPTH

4.9 Authentication&Authorization
Configuration and management of security in Blazor apps
is supported by existing ASP.NETCoremechanisms.

Tip

Authentication confirms that users are who they say
they are. Authorization gives users permission to
access a resource (typically after authentication).

4.9.1 Blazor Server Auth
Authentication in SignalR based apps is handled when the
connection from client to server is established and can be
based on a cookie or some other token.

Create a new Blazor Server App project in Visual Studio
and select Individual Authentication (in-app) to create a
project including local user account store.

Open appsettings.json and locate the DataSource value of the
Connection String. This is the location of the database.
Also notice that the folder Areas/Identity has been created
which contains pages for logging users in and out alongwith
an identity provider. The folder Data contains database
migrations and an ApplicationDbContext used for migrating
the database with Entity Framework.

4.9. AUTHENTICATION&AUTHORIZATION 75

Tip

To manage Entity Framework migrations run
dotnet tool install --global dotnet-ef
and perform updates using
dotnet ef database update.

Run the application and create two users. Name them
user@blazor.com and admin@blazor.com. The app.db
file has now been updated with the two users. Open app.db
using any database browser and run the following SQL:

INSERT INTO AspNetRoles (Id, Name, NormalizedName)
VALUES (”User”, ”User”, ”User”),

(”Admin”, ”Admin”, ”Admin”);

INSERT INTO AspNetUserRoles (UserId, RoleId)
SELECT Id, ”User” as RoleId
FROM AspNetUsers;

INSERT INTO AspNetUserRoles (UserId, RoleId)
SELECT Id, ”Admin” as RoleId
FROM AspNetUsers
WHERE UserName = ’admin@blazor.com’;

This adds the rolesUser andAdmin to the database. Open
Startup.cs add add the roles to the application:

services.AddDefaultIdentity<IdentityUser>(options =>
options.SignIn.RequireConfirmedAccount = true)

76 CHAPTER 4. BLAZOR IN-DEPTH

.AddRoles<IdentityRole>()

.AddEntityFrameworkStores<ApplicationDbContext>();

In Index.razor add:

<AuthorizeView>
<Authorized>

<p>Is authorized</p>
<p>User: @User.IsInRole(”User”);</p>
<p>Admin: @User.IsInRole(”Admin”);</p>

</Authorized>
<NotAuthorized>

<p>Is not authorized</p>
</NotAuthorized>

</AuthorizeView>

When the application is run the home page should now
display whether the user is authenticated or not and if au-
thenticated which roles it has.

The AuthorizeView can be passed a Roles parameter in
order to only display the content for a user with the specific
role. This can be useful for hiding certain menu items from
users:

<AuthorizeView Roles=”User”>
...
<NavLink class=”nav-link” href=”counter”>
...

</AuthorizeView>

4.9. AUTHENTICATION&AUTHORIZATION 77

Since the user can still access a page without clicking the
menu item (e.g. localhost:5000/Counter) the component
itself can use authorization to disallow access. Add the
following line to the top of Counter.razor:

@attribute [Authorize(Roles = ”User”)]

The component is now inaccessible for any user without
the User role.

You can change the message displayed to unauthenticated
users in App.razor as follows:

...
<AuthorizeRouteView RouteData=”@routeData”

DefaultLayout=”@typeof(MainLayout)”>
<NotAuthorized>

Denied!
</NotAuthorized>

</AuthorizeRouteView>
...

localhost:5000/Counter

78 CHAPTER 4. BLAZOR IN-DEPTH

4.9.2 AuthenticationStateProviderservice

Use AuthenticationStateProvider to get user identity and
role (claims) for usage in code:

@using System.Security.Claims
@inject AuthenticationStateProvider Auth
...
@code {

private ClaimsPrincipal User;
...

private void IncrementCount() {
...
if (User.Identity.IsAuthenticated

&& User.IsInRole(”Admin”)) {
currentCount++;

}
}

protected async override Task
OnInitializedAsync() {
var auth = await

Auth.GetAuthenticationStateAsync();

User = auth.User;
}

}

4.9. AUTHENTICATION&AUTHORIZATION 79

The AuthenticationStateProvider is injected at the top
of the page and is used for retrieving the authentication
state in the OnInitializedAsync() method.

The User is retrieved as a ClaimsPrincipal holding a col-
lection of ClaimsIdentity identities. The ClaimsPrincipal
can be queried for authentication and authorization as seen
in the code above.

Only authenticated users with the Admin role are now
allowed to click the button.

4.9.3 BlazorWebAssembyAuth
Create a new Blazor WebAssembly App project in Visual
Studio and select Individual Authentication (in-app) to cre-
ate a project that includes a local user account store. Make
sure to select the ”ASP.NETCoreHosted” checkbox.

Basic authentication works out of the box but a couple of
additional steps are required for adding authorization to
the app. Follow the steps for Blazor Server Authentication
& Authorization (4.9.1) to set up the server side part of the
WebAssembly application.

The server part uses Identity Server for serving roles as
a JSON array in a single role claim. A single role is sent
as a string value in the claim. To handle this we need to
implement a custom user factory for unboxing this data on
the client side. We also need to enable roles in the server
part.

80 CHAPTER 4. BLAZOR IN-DEPTH

In the client part create the file CustomUserFactory.cs in the
root folder:

using System.Linq;
using System.Security.Claims;
using System.Text.Json;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Components.
WebAssembly.Authentication;
using Microsoft.AspNetCore.Components.
WebAssembly.Authentication.Internal;

public class CustomUserFactory
: AccountClaimsPrincipalFactory<RemoteUserAccount>

{
public CustomUserFactory
(IAccessTokenProviderAccessor accessor)

: base(accessor)
{
}

public async override ValueTask<ClaimsPrincipal>
CreateUserAsync(

RemoteUserAccount account,
RemoteAuthenticationUserOptions options). {

var user = await
base.CreateUserAsync(account, options);

4.9. AUTHENTICATION&AUTHORIZATION 81

if (user.Identity.IsAuthenticated) {
var identity = (ClaimsIdentity)user.Identity;
var roleClaims =
identity.FindAll(identity.RoleClaimType)
.ToArray();

if (roleClaims != null && roleClaims.Any()) {
foreach (var existingClaim in roleClaims) {

identity.RemoveClaim(existingClaim);
}

var rolesElem =
account.AdditionalProperties[
identity.RoleClaimType];

if (rolesElem is JsonElement roles). {
if (roles.ValueKind ==
JsonValueKind.Array) {

foreach (var role in
roles.EnumerateArray()) {

identity.AddClaim(
new Claim(options.RoleClaim,
role.GetString()));

}
}
else {

identity.AddClaim(
new Claim(options.RoleClaim,
roles.GetString()));

82 CHAPTER 4. BLAZOR IN-DEPTH

}
}

}
}

return user;
}

}

Make sure to add the service to Program.cs in the client
project:

builder.Services.AddApiAuthorization()
.AddAccountClaimsPrincipalFactory
<CustomUserFactory>();

In Startup.cs of the server project configure Identity Server
to handle roles:

services.AddIdentityServer()
.AddApiAuthorization
<ApplicationUser, ApplicationDbContext>
(options =>
{

options.IdentityResources[”openid”]
.UserClaims.Add(”name”);
options.ApiResources.Single()
.UserClaims.Add(”name”);
options.IdentityResources[”openid”]
.UserClaims.Add(”role”);
options.ApiResources.Single()

4.10. STATEMANAGEMENT 83

.UserClaims.Add(”role”);
});

Make sure to add the required libraries to _Imports.razor in
the client project:

@using Microsoft.AspNetCore.Authorization
@using System.SecurityClaims

Authentication and authorization now works in the Blazor
WebAssembly.

4.10 Statemanagement
The user state include the hierarchy of component instances
including fields, properties and their most recent render
output as well as data held in DI service instances and val-
ues set through JavaScript Interop calls. The user state for
a Blazor WebAssembly app is held in the memory of the
browser and is lost when the browser is closed or reloaded.

To preserve state across sessions the app must persist data
to some other storage location than the browser memory.
This is useful formulti-stepweb forms, shopping carts etc.

4.10.1 Server-side storage
Use independent server-side storage accessed via web API
for permanent data persistance spanningmultiple users and

84 CHAPTER 4. BLAZOR IN-DEPTH

devices. Options for server-side storage include: Blob stor-
age, key-value storage, relational database, table storage etc.

Additional measures of security are needed in Blazor We-
bAssembly apps as they run completely in the browser. Typ-
ically, the app authenticates via OAuth/OpenID Connect
(OIDC) and then interacts with the server via web API
calls. The server acts as the mediator between the Blazor
WebAssembly app and the storage device or database.

4.10.2 URL
Use the URL for transferring data representing navigation
state. This is useful for IDs of viewed entities, the current
page number in a paged grid etc.

Tip

Contents of the address bar in the browser is retained
when the user reloads the page.

4.10.3 Browser storage
A common location for storage in the browser is the
localStorage and sessionStorage. These storages can
be used in Blazor WebAssembly apps but only by writing
custom code or by usage of third-party packages.

The localStorage is scoped to the window of a browser
and is persisted when the user closes or reloads the browser.

4.10. STATEMANAGEMENT 85

Also note that the localStorage is shared across tabs and
is persisted until explicitly cleared.

The sessionStorage is scoped to the tab of a browser and
is persisted when a tab is reloaded. The sessionStorage
state is lost when the tab or browser is closed. Also note
that each tab has its own independent sessionStorage state.

Use sessionStorage to avoid the risk of bugs in state stor-
age across tabs or tabs overwriting the state of other tabs.
Use localStorage for persisting state across closing and
opening the browser.

Warning

The data stored in localStorage and
sessionStorage can be altered manually by the
user. Do not store secret information in these
locations.

86 CHAPTER 4. BLAZOR IN-DEPTH

4.10.4 State container service
Components can share access to data using a registered in-
memory state container. Create a custom state container
class with an assignable Action to notify components of
state changes:

public class StateContainer
{

public string Property { get; set; }
= ”Initial value”;

public event Action OnChange;

public void SetProperty(string value)
{

Property = value;
NotifyStateChanged();

}

private void NotifyStateChanged() =>
OnChange?.Invoke();

}

Make sure to add the service to Program.Main (Blazor We-
bAssembly):

builder.Services.AddSingleton<StateContainer>();

Or Startup.ConfigureServices (Blazor Server):

4.10. STATEMANAGEMENT 87

services.AddSingleton<StateContainer>();

Use the StateContainer in your component:

@inject StateContainer StateContainer
@implements IDisposable
...
<button @onclick=”ChangePropertyValue”>

Set Property
</button>
...
@code {

protected override void OnInitialized()
{

StateContainer.OnChange +=
StateHasChanged;

}

private void ChangePropertyValue()
{

StateContainer.SetProperty(
$”New value set {DateTime.Now}”);

}

public void Dispose()
{

StateContainer.OnChange -=
StateHasChanged;

}
}

88 CHAPTER 4. BLAZOR IN-DEPTH

4.11 ComponentVirtualization
Blazor supports built-in virtualization which is a technique
for limiting UI rendering to just the parts currently visi-
ble. This is useful when the app is rendering long lists of
items where only a subset of the items are required to be
visible.

This is best explained in the FetchData component of a
new Blazor Server project. Open WeatherForecastService.cs
and increase the number of forecasts to 500:

public class WeatherForecastService
{

public Task<WeatherForecast[]>
GetForecastAsync(DateTime startDate)
{

...
return Task.FromResult(
Enumerable.Range(1, 500).Select(...
...

}
...

4.11. COMPONENTVIRTUALIZATION 89

In FetchData.razor switch out the for-loop to a Virtualize
component:

<Virtualize
Items=”forecasts”
Context=”forecast”>
<tr>

<td>@forecast.Date.ToShortDateString()</td>
<td>@forecast.TemperatureC</td>
<td>@forecast.TemperatureF</td>
<td>@forecast.Summary</td>

</tr>
</Virtualize>

The Virtualize component automatically calculates how
many items to render based on the height of the container
and the size of rendered items.

Note that even though theDOMonly renders a set number
of items, all the items are still loaded into memory. To
prevent this, you can provide an items provider delegate
method to the ItemsProvider parameter of the Virtualize
component:

90 CHAPTER 4. BLAZOR IN-DEPTH

<Virtualize
ItemsProvider=”@LoadForecasts”
Context=”forecast”>
<ItemContent>

<tr>
...

</tr>
</ItemContent>
<Placeholder>

<p>
Loading...

</p>
</Placeholder>

</Virtualize>

@code {
...
protected async ValueTask<ItemsProviderResult
<WeatherForecast>> LoadForecasts
(ItemsProviderRequest request)

{
return new ItemsProviderResult
<WeatherForecast>(
forecasts.Skip(request.StartIndex)
.Take(request.Count),
forecasts.Count());

}
}

4.12. CSS ISOLATION 91

The items provider now receives an ItemsProviderRequest
specifying the required number of items starting at
request.StartIndex requiring request.Count items. This
information can be used to lazily load data as needed.

Notice the use of <Placeholder> in the HTML. The con-
tent of the placeholder is displayed when data is loaded
which improves the user experience.

Tip

The Virtualize component can be customized using
parameters ItemSize to specify the item size in
pixels (default 50px) or OverscanCount to determine
how many additional items are rendered before and
after the visible region (default 3).

4.12 CSS Isolation
CSS isolation is used to prevent dependencies on global
styles and to avoid styling conflicts among components and
libraries.

Add the file FetchData.razor.css to your pages folder with the
following code:

h1 {
color: green;

}

92 CHAPTER 4. BLAZOR IN-DEPTH

Blazor will now apply the CSS in the file exclusively to the
FetchData component. If the app is run you will notice
that only the FetchData page now shows the header in a
green color.

When the application is built, Blazor rewrites CSS selec-
tors to match markup rendered by the component. The
CSS styles are then bundled and produced as the static asset
{PROJECT NAME}.styles.css.

Use the ::deep combinator in the CSS file to apply CSS
rules to descendant components:

::deep h1 {
color: green;

}

Also note that descendant components must be wrapped
by an outer element:

<div>
<h1>Parent>
<Child />

</div>

4.13. DEBUGGING 93

4.13 Debugging
BlazorWebAssembly applications can be debugged in both
the browser dev tools (Microsoft Edge/Google Chrome)
and in the Visual Studio IDE. Blazor Server apps aremainly
debugged in the IDE as the browser is used for render-
ing.

4.13.1 IDE debugging
For Blazor Server applications, IDE debugging works out
of the box as the application is self-contained.

OpenCounter.razor and add a breakpointwhere the CurrentCount
is incremented (CurrentCount++;). Whenever the button
on theCounter page is clicked you can now inspect its value
in the IDE. Use single stepping (F10) or resume code exe-
cution (F8).

To enable debugging for your Blazor WebAssembly app,
open launchSettings.json and add the following line to each
launch profile:

”inspectUri”: ”{wsProtocol}://{url.hostname}:
{url.port}/_framework/debug/ws-proxy?
browser={browserInspectUri}”

This tells the IDE that the app is a Blazor WebAssem-
bly app and instructs the script debugging infrastructure to
connect to the browser throughBlazor’s debugging proxy.

94 CHAPTER 4. BLAZOR IN-DEPTH

To start debugging, press F5 (or equivalent) in Visual Stu-
dio. Breakpoints can now be set on lines in the code.

Browser debugging

For Blazor WebAssembly apps you might want to use your
browser for debugging.

Run a Debug build of your app in the Development envi-
ronment and launch Google Chrome or Microsoft Edge.
Navigate to the URL of the app (localhost:5000 or simi-
lar).

In the browser, commence remote debugging by pressing
Shift+Alt+d. If remote debugging is not enabled in your
browser you will be shown an error page with instructions
on how to enable it.

The Sources tabwill now show a list of the .NET assemblies
of your app within the file:// node. Any breakpoints set in
component code (.razor) and C# code (.cs) are hit when the
code executes. Use single stepping (F10) or resume code
execution (F8).

For Blazor Server apps the Networks tab of the developer
tools shows data received from the server like static re-
sources, CSS styling and fonts. It also shows the Web-
Socket connection established to the server.

localhost:5000

4.13. DEBUGGING 95

4.13.2 Logging
Logging to the browser is a great way of keeping track of
user activity and for debugging related issues. This is easily
achieved in Blazor.

Basic logging

Basic logging to the browser console from C# is as simple
as typing:

Console.WriteLine(”Logging message”);

Ilogger

Another way of logging is to use Ilogger which comes out
of the box. Open Program.cs and set the logging level:

builder.Services.AddLogging(
builder => builder.SetMinimumLevel
(LogLevel.Trace));

In your component, inject and use the Ilogger:

...
@inject Ilogger<Counter> Logger
...
@code{

...
Logger.LogWarning(”Logging message”);
...

}

96 CHAPTER 4. BLAZOR IN-DEPTH

Serilog

Serilog has been around for a long time and is a good ex-
ample of how existing NuGet packages can be reused in
your Blazor applications. Since Serilog is based on sinks we
can also use the logging data on the server which is highly
useful.

Add the Serilog package by running:

dotnet add package Serilog
dotnet add package Serilog Sinks.BrowserConsole

Open Program.cs and add the logger:

using Serilog;
...
Log.Logger = new LoggerConfiguration()

.MinimumLevel.Debug()

.WriteTo.BrowserConsole()

.CreateLogger();

Inject and use Serilog in your component:

@inject Serilog
...
@code{

...
Logger.Information(”Information message”);
Logger.Warning(”Warning message”);
Logger.Error(”Error message”);

}

4.14. JAVASCRIPT INTEROP 97

4.14 JavaScript Interop
For specific scenarios you might want to use snippets of
JavaScript code for your Blazor apps (even though Blazor is
built to be independent from it).

This is called JavaScript Interoperability or JavaScript In-
terop. Blazor handles calls to JavaScript from .NET as well
as calls to .NET from JavaScript.

4.14.1 Calling JavaScript from .NET
Create a new page and name it JsInterop.razor. Add the
following code:

@page ”/js”
@inject IJSRuntime JS

<h1>JS Interop</h1>

<input type=”number”
@bind-value=”num1”
@bind-value:event=”oninput” />

<input type=”number”
@bind-value=”num2”
@bind-value:event=”oninput” />

<button
class=”btn btn-primary”

98 CHAPTER 4. BLAZOR IN-DEPTH

@onclick=”Add”>
Add

</button>
<button

class=”btn btn-primary”
@onclick=”Subtract”>
Subtract

</button>

<p>Result: @result</p>

@code {
private int num1;
private int num2;
private int result;

private async Task Add()
{

result = await JS.InvokeAsync<int>
(”math.add”, num1, num2);

}

private async Task Subtract()
{

result = await JS.InvokeAsync<int>
(”math.subtract”, num1, num2);

}
}

4.14. JAVASCRIPT INTEROP 99

For this example, the JavaScript runtime is injected using
the @inject IJSRuntime abstraction. Alternatively the run-
time can be injected and used directly into a class:

public class JsInteropClasses
{

private readonly IJSRuntime js;

public JsInteropClasses(IJSRuntime js)
{

this.js = js;
}
...

The InvokeAsyncmethod accepts an identifier for the JavaScript
function to be called along with any number of argument
parameters. In this example, we use the values num1 and
num2. The function is expected to return an integer.

Tip

Return type T of InvokeAsync<T> must be JSON
serializable.

Tip

JavaScript functions returning a Promise are called
using InvokeAsync which in turn unwraps the
Promise and returns the value awaited by the
Promise.

100 CHAPTER 4. BLAZOR IN-DEPTH

To add the JavaScript functions we create a folder www-
root/js in which we add a file called math.js. Add the follow-
ing code to math.js:

window.math = {
add: function (a, b) {

return a + b;
},
subtract: function (a, b) {

return a - b;
}

};

The functions add and subtract are added to the global
scope (window) which makes them accessible to from our
page. Reference this script from wwwroot/index.html (We-
bAssembly) or Pages/_Host.cshtml (Server):

<!DOCTYPE html>
<html>
<head>

...
<script src=”js/math.js”></script>

</head>
...

Run your application and visit localhost:5000/js. The
very basic calculator should work as intended.

localhost:5000/js

4.14. JAVASCRIPT INTEROP 101

4.14.2 Calling .NET from JavaScript
Blazor also handles .NET calls from JavaScript code. In
this section we will add decimal to binary functionality in
the component triggered fromour previous JavaScript code
(4.14.1).

Static .NET calls

Open JsInterop.razor and add the following code:

...
<button type=”button” class=”btn btn-primary”

onclick=”math.logBinaryAsync(@result)”>
Console.log @result to binary

</button>
...
@code {

...
private int resultBin;
...
[JSInvokable]
public static Task<string>
ReturnBinaryAsync(int dec)
{

return Task.FromResult(
Convert.ToString(dec, 2));

}
}

102 CHAPTER 4. BLAZOR IN-DEPTH

Here we add the method ReturnBinaryAsync which ac-
cepts a decimal value and converts it into a binary string.

When the new button is clicked it is supposed to trigger
the JavaScript function math.logBinaryAsync. Let us add
it in wwwroot/js/math.js:

window.math = {
...
logBinaryAsync: function (dec) {

DotNet.invokeMethodAsync(’BlazorWasmApp’,
’ReturnBinaryAsync’, dec)

.then(data => {
console.log(data);

});
}

};

The logBinaryAsync function invokes the static .NETmethod
ReturnBinaryAsync passing the decimal value as a param-
eter and returning a promise. We then log the calculated
binary string to the console.

4.14. JAVASCRIPT INTEROP 103

Component instance .NET calls

Remove the ”Log to binary”-button and rewrite the result
paragraph in JsInterop.razor:

<p>Result: @result
@if (resultBin != null)
{
(bin @resultBin)
}

</p>

Also rewrite and add the following code in the @code block:

@code {
private string resultBin;
private static Action<string> action;
...
protected override void OnInitialized()
{

action = UpdateResultBin;
}

private void UpdateResultBin(string bin)
{

resultBin = bin;
StateHasChanged();

}

[JSInvokable]
public static Task<string> ReturnBinaryAsync(int dec)

104 CHAPTER 4. BLAZOR IN-DEPTH

{
var bin = Convert.ToString(dec, 2);
action.Invoke(bin);
return Task.FromResult(bin);

}
}

The ReturnBinaryAsync method will now wrap the call to
the instance method UpdateResultBin as an invoked ac-
tion. The UpdateResultBin method will then change the
actual state of the component.

We can now remove the console.log call and clean upp
math.js as follows:

window.math = {
add: function (a, b) {
let result = a + b;
DotNet.invokeMethodAsync(’BlazorWasmApp’,

’ReturnBinaryAsync’, result)
return result;

},
subtract: function (a, b) {

let result = a - b;
DotNet.invokeMethodAsync(’BlazorWasmApp’,

’ReturnBinaryAsync’, result);
return result;

}
};

4.14. JAVASCRIPT INTEROP 105

Tip

Blazor Server apps with several concurrent
users using the same component should use
a helper class to invoke instance methods.
For more information visit: https://docs.
microsoft.com/en-us/aspnet/core/blazor/
call-dotnet-from-javascript.

4.14.3 npm packages in Blazor
Create a folder NpmJs in the root of the project. Navigate
to this folder in the command line and run:

npm init -y

This will create a package.json file in the NpmJs directory.
Next up we need a bundler for the JavaScript files. Install
webpack and the webpack CLI as developer dependencies
by running:

npm install webpack webpack-cli --save-dev

Add a folder named src under the NpmJs directory and cre-
ate a file index.js in it.

Modify package.json to use index.js as the source file and set
the output directory to be placed in the js folder of the
wwwroot directory:

https://docs.microsoft.com/en-us/aspnet/core/blazor/call-dotnet-from-javascript
https://docs.microsoft.com/en-us/aspnet/core/blazor/call-dotnet-from-javascript
https://docs.microsoft.com/en-us/aspnet/core/blazor/call-dotnet-from-javascript

106 CHAPTER 4. BLAZOR IN-DEPTH

...
”scripts”: {

”build”: ”webpack ./src/index.js --output-path
../wwwroot/js --output-filename index.bundle.js”

}

Modify the .csproj file to set up a pre-build step for in-
stalling and building the npm packages:

...
<Target Name=”PreBuild”
BeforeTargets=”PreBuildEvent”>

<Exec Command=”npm install”
WorkingDirectory=”NpmJS” />
<Exec Command=”npm run build”
WorkingDirectory=”NpmJS” />

</Target>

Finally make sure to include the index.bundle.js file to your
application in wwwroot/index.html:

<script src=”js/index.bundle.js”></script>

The bundled JavaScript file will nowbe called index.bundle.js.

We can now install any npm packages in the NpmJs direc-
tory using:

npm install ...

Use index.js to initialize the JavaScript components or to set
up functions for interacting with them as explained in the
previous section (4.14.2).

Chapter 5

Blazor in the real
world

5.1 In the Cloud

In this section we will discuss Blazor hosting in the cloud
and more specifically using Microsoft Azure.

Azure is a cloud computing service for building, testing,
deploying and managing applications and services through
Microsoft managed data centers. Azure provides software
as a service (SaaS), platform as a service (PaaS) and infras-
tructure as a service (IaaS).

107

108 CHAPTER 5. BLAZOR IN THE REALWORLD

5.1.1 Publishing to Azure
In the Azure Portal, create a resource group and give it a
name, subscription and location. Optionally you can create
a new server with a database and use its connection strings
in your application.

FromVisual Studio, right-click the project and select ”Pub-
lish to Azure...”. Select ”App Service” and ”Create New”.
Log in to your Azure account and fill out the fields for the
app. Make sure to select your newly created resource group
and note that the public URL will be:
<App-Name>.azurewebsites.net.

After the deployment is successful thewebsite will be launched
in the browser. Subsequent publishes will be a 1-click op-
eration and not require filling out any information.

5.1.2 Azure ADB2C
From theAzure Portal, create a new resource ”AzureActive
Directory B2C” and create a tenant. Also make sure to link
the tenant to an Azure subscription. Each tenant in Azure
can access the same services independently as long as they
are linked to a subscription.

Azure AD B2C allows for 3rd party service providers as
the identity provider (e.g. Facebook, Google, Twitter etc.).
Navigate to the ”Identity providers” tab and select your
connectors. Typically you need to fill in a client ID and
a secret to configure them.

<App-Name>.azurewebsites.net

5.1. IN THE CLOUD 109

Navigate to ”User flows” to set up policies for sign up, sign
out, password reset etc. Create a user flownamed signup_signin
and select the identity provider(s) you want to use along
with the user attributes and token claims to be collected
and returned. Do the same for a user flownamed password_reset.

Go to ”App registrations” and register a new app. Type
https://localhost:5000/signin-oidc or similar in theRedi-
rect URI field. Note down the Application-ID.

Create a new Blazor Server application and select ”Individ-
ual User Accounts” and ”Connect to an existing user store
in the cloud”. Fill out the form as follows:

• DomainName: <Tenant-Name>.onmicrosoft.com

• Application ID: <Application-ID>

• Sign-up or Sign-in Policy: signup_signin

• Reset Password Policy: password_reset

Run the application and you should be re-directed to the
Azure AD B2C UI for authentication without writing a
single line of code!

1Inspiration from Carl Franklin https://blazortrain.com/

https://localhost:5000/signin-oidc
https://blazortrain.com/

110 CHAPTER 5. BLAZOR IN THE REALWORLD

5.1.3 Serverless architectures
The standard web app architecture relies on a server for
processing requests from the user. The issues with this
approach is that the server needs to be up and running
constantly and that more servers are needed when the app
scales.

In serverless web app architectures the user requests data
from a storage locationwhich simply returns the files needed
for interactive apps to run on the client side. Prior to We-
bAssembly this was only possible using JavaScript.

The problem with serverless web apps is that secrets can-
not be stored in the client. This can be solved using Azure
Functionswhich enablesAPIs for storing data (e.g. databases)
without the need of an explicit server.

By using the serverless approach the need for a server to
be up and running is eliminated along with the problem of
scaling. The actual processing is instead distributed among
the clients.

You can also put a Azure CDN in front of the storage ac-
count. This will help with caching and let you use a custom
domain with a free certificate if you own the domain.

5.2. MOBILE &DESKTOP 111

5.2 Mobile &Desktop
BlazorWebAssembly applications can run asMobile orDesk-
top Applications either as a Progressive Web Application
(PWA) or by using frameworks like Electron.

5.2.1 ProgressiveWebApplications
A PWA is typically a Single Page Application (SPA) that
uses modern browser APIs and capabilities to behave like
a desktop app.

As BlazorWebAssembly is a standards-based client-sideweb
app platform it can use any browser API including PWA
APIs required for capabilities like:

• Work offline and load instantly.

• Run in its own app window.

• Launch from operating system start menu, dock or
home screen.

• Receive push notifications from a backend server even
while the app is not being used.

• Automatically update in the background.

Appswith these capabilities are described ”Progressive” be-
cause the user might first discover and use the app within
their web browser and then install it in their OS and enable
push notifications.

112 CHAPTER 5. BLAZOR IN THE REALWORLD

To create a Progressive Blazor Web Application, create it
using Visual Studio or run the following command in the
console:

dotnet new blazorwasm -o BlazorPWA --pwa

When the application is launched, users have the option
to install the app into their OS start menu, dock or home
screen.

Once installed, the app appears in its own window with-
out an address bar. This window can be customized (title,
color scheme, icon etc.) using the manifest.json file in the
wwwroot directory.

Tip

Use the framework ElectronNET to build cross
platform desktop apps for accessing the file system
and more. [5]

5.3. BLAZOR LIBRARIES 113

5.3 Blazor Libraries
Blazor already has a large community of 3rd party libraries
for components, theming, testing and more. Following is a
compilation of the most prominent libraries:

• Blazored: Libraries and Components designed for
the Blazor Framework. [6]

• bUnit: A testing library for Blazor Components. [7]

• Radzen: Desktop application for rapid web app de-
velopment that hides the complexity of code behind
its user-friendly interface. [8]

• MatBlazor: Material Design components for Bla-
zor. [9]

• Blazorize: Blazorise is a component library built on
top of Blazor with support for CSS frameworks like
Bootstrap, Bulma, AntDesign and Material. [10]

• Telerik: Software tools for web, mobile, desktop ap-
plication development, tools and subscription services
for cross-platform application development. [11]

• Syncfusion: UIComponent Suite for Building Pow-
erful Web, Desktop, and Mobile Apps. [12]

• DevExpress: Blazor UI Component Library with
over 30 native Blazor components (including a Data-
Grid, PivotGrid, Scheduler, Chart, Data Editors, and
Reporting). [13]

114 CHAPTER 5. BLAZOR IN THE REALWORLD

5.4 What’s Next?
WhileWebAssemblywas never intended to replace JavaScript
it has paved the way forward for themess web development
has become today.

WebAssembly still lacks direct access to theDOMand other
browser APIs but will surely mature as we head into the
future. It is efficient, compact and modern making it the
perfect candidate to replace JavaScript.

Try browsing the web today with JavaScript turned off and
notice how JavaScript has essentially ”become” the browser.
As developers we need to start thinking about howwe want
the web to operate in the future.

Microsoft is currently working on ways of compiling C#
code directly to WebAssembly in the build phase some-
thing known as ahead of time compilation (AoT) which is a
step in the right direction. This is scheduled for the release
of .NET 6 in late 2021.

Blazor which now is part of the .NET ecosystem offers an
intermediate step enabling C# to finally be used wholly
throughout organizations leading to easier onboarding and
training of employees.

With the latest addition to the C# language (9.0) Source
Generators were added which can be used to inspect and
produce additional files compiled together with the rest of
your code during compilation phase.

5.4. WHAT’S NEXT? 115

In the future Blazor will potentially be able to render to
other formats thanHTML as the renderer is extensible and
can be replaced. We could for example render to native
controls. Today we can use ElectronNET to build Blazor
applications for Windows, Mac or Linux.

It is clear that Microsoft since Typescript has hinted for
a new and better way of doing web development and we
are starting to see the fruits of their labour with Blazor
being the shiny beacon of light in the forest of modern web
development.

116 CHAPTER 5. BLAZOR IN THE REALWORLD

Bibliography

[1] Microsoft. Blazor: Build client web apps with C#
https://dotnet.microsoft.com/apps/aspnet/web-apps/blazor

[2] Microsoft. ASP.NET Core Blazor advanced scenarios
https://docs.microsoft.com/en-us/aspnet/core/blazor/advanced-scenarios

[3] Microsoft. Host and deploy Blazor Server
https://docs.microsoft.com/en-us/aspnet/core/blazor/host-and-deploy/server

[4] Peter Morris. Render trees
https://blazor-university.com/components/render-trees/

[5] ElectronNET Electron.NET
https://github.com/ElectronNET/Electron.NET

[6] Chris Sainty. Blazored
https://github.com/Blazored

[7] Egil Hansen. bUnit
https://github.com/egil/bUnit

117

118 BIBLIOGRAPHY

[8] Radzen Ltd. radzen
https://www.radzen.com/

[9] Vladimir Samoilenko.MatBlazor
https://www.matblazor.com/

[10] Mladen Macanovic. Blazorise
https://blazorise.com/

[11] Progress Software Corporation. Telerik
https://www.telerik.com/

[12] Syncfusion Inc. Syncfusion
https://www.syncfusion.com/

[13] Developer Express Inc. DevExpress
https://www.devexpress.com/blazor/

[14] SSW SSWTV
https://tv.ssw.com/

[15] Free Code Camp freeCodeCamp
https://www.freecodecamp.org/

	Introduction
	Pain points
	History
	What is Blazor?
	Why Blazor?

	Background
	The .NET Framework
	WebAssembly
	SignalR
	The Virtual DOM

	Blazor variants
	Choosing your flavour
	Blazor WebAssembly
	Blazor Server

	Setting up your environment
	Blazor WebAssembly
	Your first Blazor WebAssembly App
	Project Structure

	Blazor Server
	Your first Blazor Server App
	Project Structure

	Blazor in-depth
	Components
	Code-behind
	Passing data between components
	Parameters
	Routing parameters
	Cascading parameters
	Event callbacks
	The ref attribute

	Data binding
	One-way data binding
	Two-way data binding

	Templated Components
	Template parameters
	Template context parameters

	Lifecycle & rendering triggers
	Component Lifecycle Events

	Forms and Validations
	Built-in form components
	Fluent validation

	Dependency Injection
	Blazor WebAssembly DI
	Blazor Server DI

	Authentication & Authorization
	Blazor Server Auth
	AuthenticationStateProvider service
	Blazor WebAssemby Auth

	State management
	Server-side storage
	URL
	Browser storage
	State container service

	Component Virtualization
	CSS Isolation
	Debugging
	IDE debugging
	Logging

	JavaScript Interop
	Calling JavaScript from .NET
	Calling .NET from JavaScript
	npm packages in Blazor

	Blazor in the real world
	In the Cloud
	Publishing to Azure
	Azure AD B2C
	Serverless architectures

	Mobile & Desktop
	Progressive Web Applications

	Blazor Libraries
	What's Next?

